gradient

时间:2025-03-26 06:15:37编辑:小星

梯度grad计算公式

梯度grad公式:gradu=aₓ(∂u/∂x)+aᵧ(∂u/∂y)+az(∂u/∂z)。1、在向量微积分中,标量场的梯度是一个向量场。设M是可微的流形, 在M的每一点处安放一个切向量, 要求这些切向量的基点连续移动时,他们也跟着连续地变动的。这些切向量全体称为M上的一个切向量场。2、标量场中某一点的梯度指向在这点标量场增长最快的方向。标量场是指一个仅用其大小就可以完整表征的场。一个标量场u 可以用一个标量函数u(x,y,z)来表示。标量场分为实标量场和复标量场,其中实标量场是最简单的场,它只有一个实标量,而复标量是一个复数的场,它有两个独立的场量,这相当于场量有两个分量。3、梯度的绝对值是长度为1的方向中函数最大的增加率。导数描述的是函数在一点处的变化快慢的趋势,是一个变化的速率。如曲线方程的导数是随点变化的斜率,运动方程的导数是随时间变化的速率。梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

梯度grad计算公式

梯度grad计算公式:在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点P(x,y)∈D,都可以定出一个向量(δf/x)*i+(δf/y)*j,这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作gradf(x,y)。类似的对三元函数也可以定义一个:(δf/x)*i+(δf/y)*j+(δf/z)*k记为grad[f(x,y,z)]。
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。


bp神经网络中的gradient是什么意思

若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。

现在很多算法在寻解过程,都会借助梯度来确定目标函数的下降方向,梯度可以理解为单变量时的导数,梯度下降的方法就是目标函数的下降方向。

你可以到《神经网络之家》nnetinfo中查看《梯度下降法》一文来理解,另外还有《Levenberg-Marquardt法理论基础》方法,也讲解了在数据不太大时,一种更优于梯度下降法的寻解方法

若果对你有帮助,请点赞。
祝学习愉快


上一篇:清扫车

下一篇:没有了